A Differential Evaluation Markov Chain Monte Carlo algorithm for Bayesian Model Updating
نویسندگان
چکیده
The use of the Bayesian tools in system identification and model updating paradigms has been increased in the last ten years. Usually, the Bayesian techniques can be implemented to incorporate the uncertainties associated with measurements as well as the prediction made by the finite element model (FEM) into the FEM updating procedure. In this case, the posterior distribution function describes the uncertainty in the FE model prediction and the experimental data. Due to the complexity of the modeled systems, the analytical solution for the posterior distribution function may not exist. This leads to the use of numerical methods, such as Markov Chain Monte Carlo techniques, to obtain approximate solutions for the posterior distribution function. In this paper, a Differential Evaluation Markov Chain Monte Carlo (DEMC) method is used to approximate the posterior function and update FEMs. The main idea of the DE-MC approach is to combine the Differential Evolution, which is an effective global optimization algorithm over real parameter space, with Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distribution function. In this paper, the DE-MC method is discussed in detail while the performance and the accuracy of this algorithm are investigated by updating two structural examples.
منابع مشابه
Spatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملBayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters
In recent years, Bayesian model updating techniques based on measured data have been applied to system identification of structures and to structural health monitoring. A fully probabilistic Bayesian model updating approach provides a robust and rigorous framework for these applications due to its ability to characterize modeling uncertainties associated with the underlying structural system an...
متن کاملBayesian Solution Uncertainty Quantification for Differential Equations
We explore probability modelling of discretization uncertainty for system states defined implicitly by ordinary or partial differential equations. Accounting for this uncertainty can avoid posterior under-coverage when likelihoods are constructed from a coarsely discretized approximation to system equations. A formalism is proposed for inferring a fixed but a priori unknown model trajectory thr...
متن کاملImproving Samc Using Smoothing Methods : Theory and Applications to Bayesian Model
Stochastic approximation Monte Carlo (SAMC) has recently been proposed by Liang, Liu and Carroll [J. Amer. Statist. Assoc. 102 (2007) 305–320] as a general simulation and optimization algorithm. In this paper, we propose to improve its convergence using smoothing methods and discuss the application of the new algorithm to Bayesian model selection problems. The new algorithm is tested through a ...
متن کاملImproving SAMC Using Smoothing Methods: Theory and Applications to Bayesian Model Selection Problems
Stochastic approximation Monte Carlo (SAMC) has recently been proposed by Liang, Liu and Carroll (2007) as a general simulation and optimization algorithm. In this paper, we propose to improve its convergence using smoothing methods and discuss the application of the new algorithm to Bayesian model selection problems. The new algorithm is tested through a change-point identification example. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.09486 شماره
صفحات -
تاریخ انتشار 2017